Uso de engenharia de software no desenvolvimento de sistema especialista fuzzy para auxílio à manutenção preditiva em hidrogeradores

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: LIMA, Bernardo César de Oliveira lattes
Orientador(a): NUNES, Marcus Vinícius Alves lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br/jspui/handle/2011/2638
Resumo: Os hidrogeradores são peças chaves no circuito brasileiro de energia, sua indisponibilidade e mau funcionamento podem causar multas altíssimas a concessionárias aplicadas pela ANEEL por não atenderem a demandas e até por paradas impróprias para efetivar manutenções, além de agravar confiabilidade na garantia do fornecimento aos consumidores finais. Para garantir que isso não venha acontecer, a manutenção preditiva fornece técnicas que podem apontar as falhas analisando os “sinais vitais” originados pelo próprio equipamento. Desta forma as condições mecânicas e operacionais são periodicamente monitoradas e quando as tendências são detectadas insalubres, as peças incômodas na máquina são identificadas e programadas para manutenção. Para que essa tendência seja encontrada, utiliza-se da lógica fuzzy para modelar o comportamento dos hidrogeradores, sendo mais especifico: mancais, estator e anel coletor, inferindo conclusões prováveis de falhas. Neste trabalho, mostra o processo de construção do sistema que auxilia no diagnóstico da manutenção preditiva, desde sua metodologia de desenvolvimento por macro-atividades, definição arquitetural, conformidade dos requisitos e análise do conhecimento inserido a inteligência do sistema. O sistema foi desenvolvido em plataforma labview para servir como ferramenta de apoio. Todo o conhecimento inserido no sistema foi obtido com o corpo especialista de Eletronorte e outra parte na literatura, foi necessário aplicar o conceito de regras ao maquina de inferência fuzzy, para uma forma linguística de fácil compreensão, para que os próprios especialistas ampliem e evolua o software.