Análise da transferência de calor convectiva por transformada integral em canais com paredes onduladas

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: MIYAGAWA, Helder Kiyoshi lattes
Outros Autores: https://orcid.org/0000-0001-9346-4696
Orientador(a): QUARESMA, João Nazareno Nonato lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia de Recursos Naturais da Amazônia
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br:8080/jspui/handle/2011/15344
Resumo: A abordagem híbrida numérica-analítica conhecida como Técnica de Transformação Integral Generalizada (GITT) é empregada na solução das equações de Navier-Stokes e de energia que matematicamente modelam a transferência de calor convectiva em canais com paredes onduladas. O escoamento é considerado laminar, incompressível e bidimensional envolvendo um fluido newtoniano com propriedades físicas independentes da temperatura, enquanto as temperaturas das paredes são mantidas constantes ao longo do comprimento do canal. É adotada a formulação de função corrente, que elimina o campo de pressão e satisfaz automaticamente a equação de continuidade. Extensivas análises de convergência são realizadas para os campos de função corrente e de temperatura, bem como para o produto do fator de atrito pelo número de Reynolds e para o número de Nusselt local, a fim de demonstrar a robustez do método. A verificação dos resultados da GITT também é realizada comparando a velocidade da linha central, o produto do fator de atrito pelo número de Reynolds, a temperatura média e o número de Nusselt local com resultados obtidos com o software comercial de simulação COMSOL Multiphysics demonstrando boa concordância. Também é analisada a influência dos parâmetros, como o número de Reynolds, amplitude da parede ondulada, número de ondas e fase entre as corrugações das paredes nos campos de velocidade, temperatura e geração de entropia, demonstrando sua importância para a intensificação de transferência de calor convectiva e para a otimização energética.