Solução da equação de Archie com algoritmos inteligentes

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: SILVA, Carolina Barros da lattes
Orientador(a): ANDRADE, André José Neves lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Geofísica
Departamento: Instituto de Geociências
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br/jspui/handle/2011/11958
Resumo: A equação de Archie é um marco histórico da Avaliação de Formação por ser a primeira relação envolvendo as propriedades físicas das rochas e as suas propriedades petrofísicas possibilitando a identificação e a quantificação de hidrocarbonetos em subsuperfície. A saturação de água é a solução da equação de Archie obtida a partir da medida da resistividade e da estimativa da porosidade da formação. No entanto, a solução da equação de Archie é não trivial, na dependência do conhecimento prévio da resistividade da água de formação e dos expoentes de Archie (cimentação e saturação). Esta tese apresenta um conjunto de algoritmos inteligentes inéditos, que possibilitam a solução da equação de Archie. Uma variação da rede neural competitiva, denominada como rede neural bicompetitiva realiza o zoneamento do poço, delimitando as camadas reservatório. Para cada camada reservatório, um novo algoritmo genético, com uma estratégia evolutiva baseada na reprodução de fungos produz estimativas para os parâmetros de porosidade da matriz (densidade, tempo de trânsito e porosidade neutrônica), que aliados a um novo modelo de rocha produzem estimativas realistas da porosidade, considerando os efeitos da argilosidade. Uma nova rede neural competitiva denominada como rede competitiva angular realiza a interpretação do Gráfico de Pickett fornecendo as informações da resistividade da água de formação e do expoente de cimentação. Todos os resultados da metodologia aqui apresentada são obtidos com dados sintéticos e perfis convencionais.