Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
GOMES, Evanice Pinheiro
 |
Orientador(a): |
BLANCO, Claudio José Cavalcante
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Pará
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Civil
|
Departamento: |
Instituto de Tecnologia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufpa.br/jspui/handle/2011/15757
|
Resumo: |
As análises hidrológicas realizadas a partir das precipitações na Amazônia são essenciais devido a sua importância na regulação do clima, na circulação atmosférica regional e global. No entanto, nesta região, existem limitações relacionadas a séries de dados com períodos curtos e muitas falhas, sobretudo na escala diária. Apesar dos avanços significativos em ciência e tecnologia, previsões práticas e precisas tem sido uma grande preocupação, devido a sua complexidade. Portanto, vários modelos conceituais, empíricos ou híbridos vêm sendo testados para estimativas de chuva com maior precisão. Dentre os modelos empíricos, os que incorporam métodos de inteligência artificial (IA) são abordagens potencialmente úteis para simular o processo de precipitação. As Redes Neurais Artificiais (RNA), como modelos de IA, são capazes de estabelecer uma relação entre entradas históricas (chuva, vazão, etc.) e as saídas desejadas, através de função não linear composta de vários fatores que são ajustados aos dados observados, permitindo sua estimativa. Assim, para melhorar as análises de precipitações, foi desenvolvido modelos híbridos, envolvendo Rede Neural Artificial (RNA) do tipo com Retardo de Tempo (TDNN), rede ELMAN, rede de Base Radial (RBF) e Sistema de Inferência Neuro-Fuzzy Adaptativo (ANFIS), acoplado com Wavelet Discreta de Máxima Sobreposição (MODWT). Adotaram-se 6 estações pluviométricas, que estão localizados em diferentes biomas da região, e dados de satélite (CMORPH). Os dados de chuva foram avaliados por períodos sazonais (chuvoso e menos chuvoso). Os resultados obtidos demostraram que o modelo MODWT-ANFIS teve a melhor capacidade em simular as precipitações diárias das estações pluviométricas avaliadas, mesmo para períodos menos chuvoso, que são sabidamente mais difíceis de serem simulados em relação aos períodos chuvosos. Nesse caso, as entradas de dados defasadas para 4 dias e 5 dias apresentaram melhor desempenho, com valores de Nash próximos a 1,0 e erros médios quadráticos inferiores a 0,001. |