Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Carvalho, Juliana de Oliveira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/81722
|
Resumo: |
A fim de responderem as consultas realizadas pelas pessoas na web, agentes inteligentes utilizam um mecanismo de raciocínio para processar as informações e acessar os serviços disponíveis na web. Todos os passos desse raciocínio formam uma prova e as informações dessas provas auxiliam nas explicações dos resultados aos usuários. Entretanto, essas provas, geradas por raciocinadores automáticos, não estão prontas para serem exibidas a pessoas e precisam ser transformadas e simplificadas em explicações mais próximas da linguagem das pessoas. Nesta dissertação, apresentamos uma arquitetura de abstração de provas para torná-las apropriadas para explicações para pessoas. Essa arquitetura utiliza padrões de abstração, que são fragmentos de provas que podem ser substituídos por regras com um significado maior para as pessoas. A nossa abordagem de abstração consiste em uma extensão do algoritmo IWAbstractor, desenvolvido por pesquisadores da universidade de Stanford, que juntamente com um conjunto de estratégias é utilizado para abstrair provas utilizando os padrões de abstração. Dessa forma, as provas geradas por raciocinadores automáticos tornam-se mais simples e compreensíveis para pessoas. Palavras-chave: Inteligência Artificial, Web Semântica, Representação de Conhecimento, Abstração, Explicação. |