Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Quinho, Marcelo Coelho |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/97315
|
Resumo: |
Identificar informações incertas ou não confiáveis em textos é fundamental para sistemas de extração de informação, pois somente informações baseadas em fatos, livre de incertezas, devem ser transmitidas para os usuários. A literatura sobre detecção de incerteza em textos contém diversos trabalhos que utilizam Aprendizado de Máquina (AM) para identificar partes do texto que não são baseados em fatos. Os trabalhos dividem o problema em três subproblemas de classificação e em seguida aplicam pós-processamento com heurísticas para retirada de inconsistências das saídas dos classificadores. Esta dissertação propõe uma metodologia híbrida baseada em AM e Programação Linear Inteira (PLI) para detectar incertezas em textos. A metodologia proposta é composta de três etapas: (1) a primeira etapa consiste no pré-processamento do texto para inclusão de informações linguísticas; (2) a segunda etapa, consiste em utilizar classificadores locais treinados com o uso de AM; (3) a terceira etapa, consiste em combinar os resultados dos classificadores locais usando um mecanismo de inferência que explora a estrutura global do problema, descartando a necessidade do uso de heurísticas. A principal contribuição da metodologia proposta, bem como desta dissertação, é o modelo de PLI proposto na etapa 3. Para verificar a viabilidade da metodologia, foi desenvolvida uma ferramenta que permitiu a aplicação num estudo de caso da área biomédica. A contribuição da combinação da saída dos classificadores com o uso de PLI é examinada a partir da comparação dos resultados produzidos quando essa etapa é substituída por um conjunto de heurísticas. Os resultados experimentais evidenciam uma melhora de 3,7 pontos na medida F ao utilizar a etapa de PLI ao invés das heurísticas. Palavras-chave: Detecção de Incertezas; Aprendizado de Máquina; Processamento em Linguagem Natural; Programação Linear Inteira |