Comitês de agrupamentos bidimensionais de dados gerados via algorimos bio-inspirados multimodais

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Menezes, Lara Carvalho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/94979
Resumo: A área de Mineração de Dados (MD) fornece um conjunto de tarefas e algoritmos voltados à extração de informações de grandes bases de dados. Entre essas tarefas, temos o agrupamento bidimensional de dados (biclustering), em que linhas e colunas de uma matriz são agrupadas simultaneamente com base na similaridade dos seus elementos. Os objetivos deste trabalho são realizar um estudo comparativo sistemático entre algoritmos bio-inspirados multimodais aplicados à tarefa de agrupamento bidimensional de dados e investigar o desempenho de comitês de biclusters gerados por esses algoritmos, tomando como base problemas de Bioinformática. Após se introduzir conceitos gerais de MD e específicos da tarefa de biclustering, passa-se a discorrer sobre algoritmos bio-inspirados multimodais e sobre modelos de comitês aplicados a essa tarefa. Experimentos conduzidos de forma sistemática avaliam o desempenho dos algoritmos bio-inspirados e de dois arranjos de comitês de biclusters, sendo que os resultados obtidos indicam que, em geral, os comitês obtiveram um desempenho mais satisfatório que os algoritmos multimodais, de acordo com as métricas de avaliação levantadas e testes estatísticos. Palavras-Chave: Mineração de dados, Aprendizado de máquina, Agrupamento bidimensional, Comitês de máquinas, Meta-heurísticas, Algoritmos bio-inspirados, Bioinformática