Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Nogueira, Daniel Fontenele |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/110737
|
Resumo: |
Sistemas baseados em Neurofeedback tem grande atuação nos tratamentos psicológicos e de reabilitação, corrigindo distúrbios no funcionamento cerebral, estimulando e desenvolvendo as habilidades dos indivíduos que os utilizam. Para tornar esses sistemas mais rápidos e precisos, controladores digitais, tais como os do tipo PID, contribuem para melhores respostas aos estímulos usados ao longo dos tratamentos, sendo os parâmetros dos controladores de grande influência para o sucesso do método. Este trabalho busca automatizar os cálculos dos parâmetros e analisar suas respostas a uma entrada de degrau unitário para os quatro tipos de controladores digitais mais utilizados (proporcional, proporcional-derivativo, proporcional-integrativo e proporcional-integral-derivativo) para controle de uma interface cérebro máquina com Neurofeedback utilizando Potencial Evocado Visual de Regime Permanente (SSVEP). Os cálculos destes parâmetros foram realizados considerando o método da Curva de Reação das Regras de Ziegler-Nichols, determinando e analisando as funções de transferência destes sistemas. Desta forma, é possível decompor os dados da Razão Sinal-Ruído (SNR) obtidos a partir de uma touca para Eletroencefalograma que utiliza 34 canais em onze indivíduos sadios. Como resultado, este trabalho conclui que, para as amostras estudadas, o controlador do tipo PID e as otimizações dos parâmetros deste controlador contribuem fortemente para que o sistema SSVEP seja robusto, podendo propiciar resultados clínicos bastante satisfatórios. Palavras-chave: Neurofeedback. Neurociência computacional. Occipital. EEG. SNR. SSVEP. Controlador digital. Ziegler-Nichols. |