Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Silveira, Francisca Raquel de Vasconcelos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/114868
|
Resumo: |
Sistemas de extração de palavras-chave tradicionalmente usam algoritmos de classificação e não consideram o fato que parte das palavras-chave podem não ser encontradas no texto, reduzindo a acurácia desses algoritmos. Neste trabalho, propõe-se melhorar a acurácia desses sistemas, expandindo o conjunto de treinamento usado pelos algoritmos de classificação com termos que não estão no texto (termos não-texto) inferidos de modelos de conhecimento, tais como bases de conhecimento e semântica distributiva. A suposição básica da tese é que termos não-texto têm um relacionamento semântico com os termos que estão no texto. Para capturar e representar esse relacionamento, foram definidas três novas heurísticas para caracterizar a relevância dos termos não-texto a serem palavras-chave. A primeira heurística tem o objetivo de capturar se o relacionamento semântico de um termo não-texto (em relação aos outros termos no texto) é maior que o relacionamento semântico do termo do texto que o inferiu. A intuição é que termos que são mais relacionados semanticamente a outros termos no documento são mais prováveis para representar o texto. A segunda heurística refere-se ao poder de discriminação do termo não-texto. A intuição é que bons candidatos para ser uma palavra-chave são aqueles que são deduzidos de vários termos do texto em um documento específico e que não são frequentemente deduzidos em outros documentos. A outra heurística representa o poder descritivo de um candidato não-texto. Argumenta-se que palavras-chave não-texto devem ter um forte relacionamento semântico com o texto e que o poder desse relacionamento semântico pode ser medido em uma maneira similar como métricas populares, tal como TFxIDF. O método proposto neste trabalho foi comparado com sistemas de estado-da-arte usando sete corpora e os resultados exibem que o método proposto tem melhorado significativamente a extração automática de palavras-chave em documentos desses corpora, lidando com a limitação de extrair palavras-chave ausentes do texto. Palavras-chave: Extração de palavras-chave. Palavras-chave ausentes do texto. Dedução de palavras-chave. Modelos de conhecimento. |