Ano de defesa: |
2014 |
Autor(a) principal: |
Andrade, Kerllon Fontenele de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/101792
|
Resumo: |
A discriminação de tráfego P2P é uma tarefa importante na gestão da rede e representa um passo crucial na detecção debotnets P2P. No entanto, discriminar o tráfego P2P é uma tarefa desafiadora, devido ao grande número de aplicações com protocolos P2P que geram comportamentos variados, enquanto outros protocolos não P2P mostram um comportamento típico de aplicações P2P. Este trabalho descreve uma estratégia de classificação utilizando árvores de decisão e naive bayes em conjunto com um grupo de atributos na tarefa de classificação de tráfego P2P conhecidos e desconhecidos. Os resultados mostram uma precisão na classificação acima de 99%. Palavras-chave: p2p; classificação de tráfego; árvores de decisão; naive bayes |
---|