Configuração heterogênea de ensembles de classificadores: investigação em bagging, boosting e multiboosting

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Nascimento, Diego Silveira Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/88503
Resumo: Este trabalho apresenta um estudo quanto à caracterização e avaliação de seis novos algoritmos de comitês de máquinas heterogêneos, sendo estes destinados à resolução de problemas de classificação de padrões. Esses algoritmos são extensões de modelos já encontrados na literatura e que vêm sendo aplicados com sucesso em diferentes domínios de pesquisa. Seguindo duas abordagens, uma evolutiva e outra construtiva, diferentes algoritmos de aprendizado de máquina (indutores) podem ser utilizados para fins de indução dos componentes do ensemble a serem treinados por Bagging, Boosting ou MultiBoosting padrão sobre os dados reamostrados, almejando-se o incremento da diversidade do modelo composto resultante. Como meio de configuração automática dos diferentes tipos de componentes, adota-se um algoritmo genético customizado para a primeira abordagem e uma busca de natureza gulosa para a segunda abordagem. Para fins de validação da proposta, foi conduzido um estudo empírico envolvendo 10 diferentes tipos de indutores e 18 problemas de classificação extraídos do repositório UCI. Os valores de acuidade obtidos via ensembles heterogêneos evolutivos e construtivos são analisados com base naqueles produzidos por modelos de ensembles homogêneos compostos pelos 10 tipos de indutores utilizados, sendo que em grande parte dos casos os resultados evidenciam ganhos de desempenho de ambas as abordagens. Palavras-chave: Aprendizado de máquina, Comitês de máquinas, Bagging, Wagging, Boosting, MultiBoosting, Algoritmo genético.