Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Rosa, Germano Mendes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Programa de Pós-Graduação em Engenharia Mineral. Departamento de Engenharia de Minas, Escola de Minas, Universidade Federal de Ouro Preto.
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufop.br/handle/123456789/2538
|
Resumo: |
O presente trabalho divide-se em duas partes: estudo da moagem de mesclas binárias de minerais com diferentes moabilidades e simulação de moagem de mesclas binárias por meio de rede neural artificial (do tipo perceptron multicamada treinada com o algoritmo retropropagação com momento). Na primeira etapa, realizou-se o estudo do comportamento dos principais fatores relacionados a moagem mista binária em batelada dos minerais dolomita e quartzo, visando estabelecer condições ideais para obtenção de um maior contraste granulométrico entre tais espécies minerais. Por meio de vários ensaios físicos em diferentes proporções volumétricas desses minerais e diferentes ciclos moagem, acompanhou-se a evolução da granulação dos produtos. Os resultados das análises granulométricas dos produtos provaram que os mesmos aderiram satisfatoriamente à função de distribuição de probabilidades sigmoidal de Hill, a qual foi adotada para apoiar a analise comparativa dos resultados, conjuntamente com o indicador global de contraste granulométrico (IGCG), definido neste trabalho. Na segunda etapa, os resultados obtidos na primeira foram utilizados para treinar uma rede neural artificial, a qual foi capaz de prever bons resultados a partir de padrões de entrada que não fizeram parte do conjunto de treinamento. |