ESTUDO TEÓRICO DE FULERENOS FUNCIONALIZADOS INTERAGINDO COM TEMOZOLAMIDA

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Vendrame, Laura Fernanda Osmari
Orientador(a): Silva, Ivana Zanella da
Banca de defesa: Machado, Fernando Machado, Rech, Virginia Cielo
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Centro Universitário Franciscano
Programa de Pós-Graduação: Programa de Pós-Graduação em Nanociências
Departamento: Biociências e Nanomateriais
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/541
Resumo: The use of C60 fullerenes, functionalized or in pristine form, as chemical and biological sensors has become a large field of study and application High stability and low chemical reactivity of these nanostructures provide some difficulties in studying the chemical and physical properties. These difficulties can be overcome through the functionalization process. The purpose of this work is to evaluate through abs initio calculations the structural and electronic properties of the temozolamide molecule interacting with functionalized fullerenes. This drug is very important for the treatment of brain tumors. This study is based on the density functional theory, using the SIESTA computational code. First of all, it was evaluated the isolated functionalized fullerenes behavior, as well as the temozolamide molecule. Subsequently, it was studied the interaction of functionalized fullerenes with temozolamide in order to understand the energetic and structural properties of these structures to support the use of these nanomaterials in future biomedical applications. From the results it is possible to observe the depending on the studied configuration, the binding energy values are not the same. It was found a weak interaction for all functionalized C60 interacting with temozolamide through physical adsorption, with values between 0.43 eV and 1.02 eV for all stable configurations. An interaction through physical adsorption was also observed for themozolamide with pristine fullerenes, with energy value of 0.23 eV. Despite some high energy values, the distance in the interaction between the nearest atoms of the nanostructure and temozolomide does not represent chemical bonds. The interaction of the temozolamide drug with fullerenes is important for the future development of central nervous system nanodrugs improving the performance and slowing the elimination of the drug by the body.