AVALIAÇÃO DE NANOTUBOS DE CARBONO SUBMETIDOS À ALTA PRESSÃO
Ano de defesa: | 2011 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Franciscana
|
Programa de Pós-Graduação: |
Mestrado Acadêmico em Nanociências
|
Departamento: |
Biociências e Nanomateriais
|
País: |
BR
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/256 http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/288 |
Resumo: | It is well known in the scientific community the importance of carbon nanotubes viewed first by Iijima in 90 s. Carbon nanotubes show great potential in many applications in different fields of knowledge, especially in the development of new materials. Several studies introduce applications of carbon nanotubes as reinforcement in many types of matrices such as ceramics and polymers, which are subjected to high pressure, in order to improve the mechanical properties of these materials. These studies are intended to use these compacts as electronic devices, mechanical applications, waveguides, and others. However, there are no studies in literature about application of high pressure on carbon nanotubes self-sustaining, that is, only carbon nanotubes, in order to obtain dense compacts, for possible applications of these materials. Thus, this work brings innovative ways of application of high pressure on multi- walled carbon nanotubes using two different pressure transmitting media, to evaluate their behavior. These evaluations were performed by characterizations such as Raman spectroscopy. It was estimated the defect level in the samples and also the dependence of the G band with pressure and with the pressure transmitting media used. It s possible to associate this relationship to the level of tension and/or compression that carbon nanotubes were submitted. X-ray diffraction allowed determination of impurities trapped in carbon nanotubes in its manufacturing process, suggesting that these impurities may possibly act as binding in compression. By surface area measurements using the BET method, it was possible to compare the surface areas of the samples in different pressure transmitting media and its influence on compression. Finally, transmission electron microscopy was used to get images of the samples, which enabled an assessment of the morphology of carbon nanotubes after different processes. |