ATIVIDADE ANTIMICROBIANA DE NANOEMULSÕES CONTENDO ÓLEO DE EUCALYPTUS GLOBULUS FRENTE À PSEUDOMONAS AERUGINOSA E CANDIDA SPP

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Quatrin, Priscilla Maciel
Orientador(a): Santos, Roberto Christ Vianna
Banca de defesa: Laer, Ana Eucares von, Rech, Virginia Cielo
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Centro Universitário Franciscano
Programa de Pós-Graduação: Programa de Pós-Graduação em Nanociências
Departamento: Biociências e Nanomateriais
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/551
Resumo: Candida species are the main cause responsible for fungal infections worldwide, with C. albicans most often associated with infectious processes. Pseudomonas aeruginosa is a Gram-negative bacterium found commonly in immunocompromised patients. The persistence of infection is often related to antimicrobial resistance and the formation of biofilms. In this context, the aim of this study was to produce and characterize nanoemulsions containing oil of E. globulus and verify their antimicrobial and antibiofilm activity against P. aeruginosa strains and Candida spp. The nanoemulsions produced had size of about 75 nm, polydispersity of 0.22, zeta potential of - 9.42 and pH of approximately 5.0. It was made the characterization of oil and nanoemulsions containing E. globulus oil, which was observed to remain the major components was performed, including the 1-8-cineole (75.78%), p-cymene (7.55%) , α-Pinene (7.39%) and limonene (6.41%). The antimicrobial activity has been assessed from the macrodilution tests and cell viability curve, where there was minimal fungicidal concentration of 0.7 mg/ml for C. albicans and 1.4 mg/ml for C. tropicalis and C. glabrata . But nanoemulsions showed no antimicrobial activity against P. aeruginosa. The antibiofilm activity was analyzed by testing with crystal violet, atomic force microscopy and staining calcofluor, demonstrating in all techniques, reduction of biofilms formed on different Candida species tested.