Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Kanashiro, Wesley Eiji Sanches |
Orientador(a): |
Gonçalves, Wesley Nunes |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufms.br/handle/123456789/2966
|
Resumo: |
A caracterização de vídeos vem sendo pesquisada cada vez mais na área de visão com- putacional por ser um tema desafiador. Caracterizar vídeos não é uma tarefa trivial, pois é preciso levar em consideração tanto a informação espacial (aparência), quanto a informação temporal (movimento). As texturas dinâmicas são um caso particular de vídeos, que podem ser definidas como movimentos de padrões que apresentam propriedades estacionárias ao longo do espaço e tempo. Exemplos de textura dinâmica podem ser encontrados em situa- ções do dia-a-dia como por exemplo, em sequências de imagens de ondas do mar, fumaça, fogo, escada rolante, entre outras. Outro caso particular de vídeos são as cenas dinâmicas, que são composições de uma ou mais texturas dinâmicas, mas com um local ou cenário caracterizando-as. Este trabalho tem por objetivo estender o Histograma de Palavras Visu- ais (BoVW) para caracterização de texturas e cenas dinâmicas. O BoVW é aplicado em três planos ortogonais do vídeo para que sejam obtidas informações espaciais e de movimento, melhorando assim, a caracterização de vídeos. Para avaliar a proposta deste trabalho, expe- rimentos foram realizados em duas bases de vídeos: tráfego de carros e cenas dinâmicas. Os resultados foram comparados com os obtidos por métodos da literatura e em ambas as bases de vídeos, o método proposto apresentou resultados promissores. Na base de cenas dinâmi- cas, pode-se concluir que a inclusão da informação de movimento para caracterização dos vídeos aumentou consideravelmente a taxa de classificação correta. Enquanto que na base de tráfego de carros, a informação temporal não influenciou de forma tão considerável a taxa de classificação correta, apesar de contribuir de certa forma na caracterização dos vídeos. |