Uma abordagem para classificação de séries temporais baseada em modelo autorregressivo e análise de recorrência

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Paula, Hudson Fujikawa de
Orientador(a): Ishii, Renato
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufms.br/handle/123456789/2855
Resumo: Atualmente, os estudos sobre o problema da classificação de séries temporais tem se concentrado em elaborar abordagens em dois formatos: baseado em funções de distância entre itens do conjunto de dados, e baseado em um procedimento de dois estágios, onde as séries temporais são transformadas em vetores de características, permitindo o emprego de técnicas de classificação convencionais. Neste contexto, não tem sido notado na literatura estudos baseados na análise de propriedades intrínsecas do processo gerador da série temporal como, por exemplo, o determinismo. Neste trabalho de mestrado, _e proposta uma abordagem para o problema da classificação de séries temporais, projetada em dois estágios e baseada na análise de propriedades intrínsecas de determinismo e de estocasticidade. Primeiramente, cada série temporal _e processada pelo modelo autorregressivo (AR) e pelo Gráfico de Recorrências, para modelar as influências estocásticas e determinísticas, presentes nas séries temporais. Posteriormente, são extraídas características, a partir da nova representação, que compõem o novo espaço característico. Para a classificação em si, optou-se pelo SVM em seu formato convencional. Tomou-se como abordagem de referência da literatura, o classificador 1-NN com funções de distâncias Euclidiana, DTW e DTW otimizado por janela de busca. Os experimentos foram executados sobre os conjuntos de dados do repositório UCR. Os resultados finais mostram que o desempenho de classificação _e competitivo, ou superior, _a melhor configuração 1-NN em 19 de 41 conjuntos de dados. Não obstante, os resultados evidenciam, também, a necessidade de uma investigação mais aprofundada sobre as influências das propriedades intrínsecas, e outras técnicas da área de análise de séries temporais, quando aplicadas na tarefa de classificação