Uso de rede neural convolucional na identificação de hipertensão arterial

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Jefferson Xavier Nobrega
Orientador(a): Milton Ernesto Romero Romero
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Fundação Universidade Federal de Mato Grosso do Sul
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufms.br/handle/123456789/5144
Resumo: A hipertensão arterial ou pressão arterial alta sustentada é uma doença crônica com grande ocorrência no Brasil e no mundo. É um dos principais indicadores para a ocor rência de acidente vascular cerebral (AVC), enfarte, aneurisma arterial e insuficiência renal e cardíaca. Impacta diretamente na frequência cardíaca e na sua variabilidade: pacientes hipertensos costumam apresentar uma menor variação na frequência cardíaca se comparados a normotensos. Porém, ainda existe controversia se é possível determi nar a hipertensão arterial somente pela Variabilidade da Frequência Cardíaca (VFC). Esta dissertação tem como objetivo estudar a questão ainda aberta se a Variabilidade da Frequência Cardíaca tem informação suficiente para definir a hipertensão, baseada no treinamento de uma Rede Neural Convolucional capaz de classificar um paciente entre saudável ou hipertenso e todos os desafios inerentes a este processo. Este treinamento é feito com base nos valores do intervalo RR do eletrocardiograma. Os intervalos RR podem apresentar outliers - amostras inválidas/incorretas - que devem ser devidamente tratados e não devem ser levados em consideração para o treinamento. Devido a baixa quantidade de arquivos para treinamento da Rede Neural Convolucional, foi utilizada a técnica data augmentation para oferecer uma maior fonte de aprendizagem. Através da Transformada Wavelet Contínua, estes arquivos de texto contendo o intervalo RR em mi lissegundos são convertidos em uma matriz com informações no domínio do tempo e da frequência. Por fim, é definido um modelo de Rede Neural Convolucional que é treinada para realizar a classificação dos pacientes. Os resultados são promissores mas dependem da quantidade de exames de pacientes que neste caso devem ser aumentada. O trabalho faz recomendações de como deve ser continuado este estudo, mas o sistema implementado na linguagem Python mostra utilidade para aprofundar o problema.