Acoplamento SPIM-FEM adaptativo para modelos de degradação elástica

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Samir Silva Saliba
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA ESTRUTURAS
Programa de Pós-Graduação em Engenharia de Estruturas
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/51556
Resumo: This thesis proposes a new approach to performing a physically nonlinear analysis of structures constituted by quasi-brittle material employing a coupling between the smoothed point interpolation method (SPIM) and the finite element method (FEM). This coupling is performed using different smoothing strategies: cell-based, edge-based, or node-based, without any restriction for the adoption of the point interpolation method (PIM) to build the shape function or for the support domain construction strategy. This approach aims to obtain, during a simulation, relevant advantages to each of the methods applied in the coupling and constitutive model. Then, with this purpose two strategies were proposed: in the first, the domain is discretized through the two methods, with the SPIM region being defined by the user; in the second, the domain starts discretized only by finite elements, and during the analysis, regions are converted to SPIM and refined automatically through parameters responsible for informing the system the location, size of the region and the moment in which this task should be performed. This work was implemented in the INSANE system (INteractive Structural Analysis Environment), which is an open-source software developed by the Structural Engineering Department of the Federal University of Minas Gerais. Numerical simulations present the resources of the implemented approaches and compare the results obtained with experimental and numerical results, widely discussed and evaluated in the academic environment, to demonstrate the ability to reproduce the expected results and validate the implementation.