Aspectos fractais em sistemas complexos

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Allbens Atman Picardi Faria
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/ESCZ-5KTSLZ
Resumo: A teoria do crescimento fractal é um dos mais fascinantes temas que surgiu na Física durante a segunda metade do século XX, tanto pela interdisciplinaridade das suas aplicações quanto pelo sucesso da teoria em descrever uma gama diversa de fenômenos apresentados por sistemas complexos. Neste trabalho, propomos uma síntese do tema a partir do estudo de sistemas simples e de modelos discretos, de modo a constituir um arcabouço teórico suficiente para a análise detalhada de problemas aplicados, utilizando cálculos analíticos e simulações. A principal contribuição deste trabalho consiste em utilizar conceitos fractais para analisar o crescimento de superfícies rugosas geradas por sistemas fora do equilíbrio. Nesse contexto, introduzimos um método alternativo para a identificaçao de transições de fase a partir da medida de expoentes críticos, possibilitando de maneira natural a verificação de classes de universalidade e classificação de vários tipos de transições. Outra contribuição original é a introdução de um modelo de deposição no qual pode-se escolher tanto a distribuição de tamanhos para as partículas (agregados) quanto a morfologia das mesmas. Inicialmente projetado para simular perfis de solos, esse modelo representa uma generalização para o crescimento de superfícies fractais, o que lhe atribui versatilidade suficiente para sua aplicação em vários processos de deposição.