Mining the technical skills of open source developers
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Programa de Pós-Graduação em Ciência da Computação UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/36500 https://orcid.org/0000-0002-3371-7353 |
Resumo: | Atualmente, software está "devorando o mundo" a medida em que surgem novas empresas nas quais o modelo de negócios é totalmente centralizado em um sistema computacional. O sucesso da implantação de tais sistemas depende, em grande medida, da qualidade e competência dos desenvolvedores responsáveis por sua implementação. Em virtude disso, empresas de TI tem empregado um esforço contínuo na contratação de novos profissionais para atuar em seus projetos. Em paralelo, o crescimento de comunidades digitais de desenvolvimento---tais como GitHub e Stack Overflow---tem contribuído com o crescimento de uma nova geração de desenvolvedores. Essas plataformas disponibilizam publicamente informações de seus usuários, frequentemente utilizadas por recrutadores durante a busca de novos talentos. Todavia, o volume e formato dos dados limita esta análise apenas a informações básicas e superficiais dos desenvolvedores. Neste contexto, propõe-se nesta tese uma ampla investigação dos métodos para identificar habilidades técnicas de desenvolvedores de software. Esta pesquisa está organizada em três grandes trabalhos. O primeiro investiga as habilidades técnicas e comportamentais mais demandadas dos desenvolvedores na visão das empresas de TI. Em seguida, analisa-se a efetividade das abordagens orientadas a dados na identificação das habilidades técnicas dos desenvolvedores em duas perspectivas: (a) profundidade, usando técnicas supervisionadas e não-supervisionadas para determinar o nível de conhecimento de desenvolvedores em bibliotecas de software; e (b) largura, aplicando métodos supervisionados para detectar a proficiência de desenvolvedores em seis funções de trabalho. A pesquisa obteve resultados promissores ao adotar um método de clusterização na classificação do nível de conhecimento dos desenvolvedores; identificaram-se grupos nos quais a concentração de desenvolvedores especialistas variou entre 65% e 75%. Em relação às funções de trabalho, o modelo proposto reportou resultados com eficácia entre 69% (revocação) e 89% (AUC). |