In silico discovery of GPCR ligands using graph-based signatures and auxiliary features

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: João Paulo Linhares Velloso
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
Programa de Pós-Graduação em Bioinformatica
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/52800
Resumo: Os receptores acoplados a proteína G (GPCR) são cruciais para muitos processos fisiológicos vitais, incluindo controle da divisão e proliferação celular, regulação do transporte de íons, modu- lação sinapse nervosa, homeostase, modulação e modificação da morfologia celular. Eles também estão envolvidos em muitos processos patológicos, como Alzheimer e Parkinson, distúrbios cardiovasculares, asma, depressão e diabete. Dada a sua importância biológica, mais de um terço dos medicamentos aprovados pela FDA têm como alvo esses receptores. No entanto, o desenvolvimento de fármacos para GPCRs passa por altas taxas de fracasso, com baixa eficácia in vivo sendo o principal contribuinte nesse processo. Isso resulta em apenas 7% de todos os medicamentos (incluindo outros receptores) em estudos de fase I sendo comercializados. Esta tese se concentrou no desenvolvimento de modelos de aprendizado de máquina capazes de prever a bioatividade de pequenas moléculas ao interagir com GPCRs. Pretendemos com essas ferramentas apoiar a descoberta de novos fármacos. Os modelos desenvolvidos (compõe o servidor web pdCSM-GPCR) baseiam-se em derivar uma série de assinaturas moleculares de ligantes conhecidos, associando essas assinaturas a bioatividade e modelando essas questões como problemas de regressão, sem a necessidade de informação estrutural do receptor. Devido a esta característica, a mesma abordagem pode ser usada para quaisquer GPCRs que já tenham sido avaliadas através triagem para ligantes, e também para outros alvos importantes, incluindo quinases e canais iônicos controlados por ligantes. Nossos modelos compõem o recurso computa- cional mais abrangente para previsão da bioatividade de GPCR até o momento, e inclui também suporte para o desenvolvimento de medicamentos para GPCRs órfãos. Nossa abordagem al- cançou correlações de Pearson de até 0,89, por meio de validação cruzada de 10 vezes e em testes cegos. Superamos significativamente os métodos anteriores. O pdCSM-GPCR foi disponibilizado gratuitamente por meio um servidor web http://biosig.unimelb.edu.au/pdcsm_gpcr. Também investigamos as propriedades de pequenas moléculas com alta afinidade por GPCRs a fim de identificar determinantes moleculares de reconhecimento. Em geral, ligantes potentes possuem fragmentos contendo nitrogênio e anéis aromáticos, características comuns em ligantes em todas as classes de GPCRs. Os resultados desta pesquisa fornecem ferramentas poderosas para a descoberta de fármacos e informações biológicas valiosas sobre as características que compõem os ligantes de GPCR.