Data-driven spatio-temporal modeling with cellular automata and fuzzy time series methods

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Lucas Malacarne Astore
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
Programa de Pós-Graduação em Engenharia Elétrica
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/51934
Resumo: Há atualmente diversas aplicações de simulações computacionais em estudos de sistemas dinâmicos espaço-temporais, incluindo, por exemplo, em modelos epidemiológicos. Dentre as estratégias capazes de reproduzir e predizer o futuro dos estados e comportamentos dinâmicos, os autômatos celulares (em inglês, cellular automata - CAs) são frequentemente aplicados na modelagem espaço-temporal. O conceito central de um típicoe bem definido modelo CAs é o desenvolvimento de um conjunto de regras locais que descrevem os estados futuros das células considerando as células vizinhas. O processo de construção deste conjunto exige conhecimento técnico e anos de pesquisa científica. Técnicas baseadas em aprendizado de máquina podem ser aplicadas para automatizá-lo, embora sejam necessários algoritmos de otimização de hiperparâmetros. Nesse contexto, este trabalho apresenta uma abordagem orientada a dados para definição de conjuntos de regras de transição de CA, baseada exclusivamente em dados históricos de um determinado fenômeno espaço-temporal. As regras locais do autômato são aprendidas e representadas usando o método Multivariado Fuzzy Time Series (MFTS). O modelo MFTS é então integrado à simulação do CA, funcionando de forma semelhante a um conjunto tradicional de regras. A metodologia proposta foi testada em dois casos de estudo: Espalhamento Espacial da Doença de Chagas e Dinâmica da Mudança do Uso e Cobertura do Solo em Delhi, na Índia. Em ambos conjuntos de dados, verificou-se grande potencial no uso do modelo FTS como estratégia de transição de estados em CA.