INTEGRAÇÃO DE DADOS AEROGEOFÍSICOS E DE SENSORES REMOTOSAPLICADA À PROSPECÇÃO NO DISTRITO FERRÍFERO NOVA AURORA, MINAS GERAIS
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/IGCC-9ZHQ42 |
Resumo: | The Nova Aurora Iron District (Northern Minas Gerais State, Brazil) comprises iron depositsassociated with metadiamictites of the Neoproterozoic Macaúbas Group. These deposits, includedin the Riacho Poções Member, Nova Aurora Formation, consist of hematite and/or magnetitematrix-rich metadiamictites, which iron content range from 13 to 60 wt% Fe. They show irregulardistribution and are mostly covered by the thick lateritic soils exposed on extensive plateaus, hidingtheir real lateral dimensions. This paper presents a geological, geophysical and remote sensingintegrated study with the aim to support mineral prospecting from regional to local scale. Theregional model show scattered favorable areas, with several high density concentration of probableiron ore deposits. In the local model, including field and borehole data, the Euler Deconvolutionreveals magnetic source depths in agreement with the ore body thickness shown by boreholecontrolledgeological sections. This local integrated model also fits well with the iron ore outcropsvisited in the field. The very extensive lateritic covers mask the lateral dimensions of the ironformations in gammaspectrometry and Landsat 8 images, since these sensors mainly reflect thesurface response of ground material. Magnetometry data may reveal the most favorable targets foriron ore prospecting, although it lacks enough detail for more specific studies. Integrated modelsmay better constrain prospecting targets, even in the extensive plateau areas. |