Desenvolvimento de nanocompósito a base de policaprolactona e nanotubo de carbono para a diferenciação neuronal de células-tronco humanas do tecido adiposo
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/BUBD-9W8GJZ |
Resumo: | Biomaterials are biodegradable materials used in implants which are able of promote regeneration of injured tissue by stimulating proliferation, differentiation and cell activity. With the development of nanotechnology, the biomaterials have been improved resulting in more versatile materials for therapy. Carbon nanotubes are one of nanomaterials that appear in this scenario and demonstrate excellent biocompatibility besides promoting spontaneous neuronal differentiation of neural progenitors. With the use of adult stem cells in cell therapy allowsthe complexation of implantable biomaterials as scaffolds. This is the most effective approach tissue engineering. In this work, we developed a nanocomposite biomaterials using polycaprolactone and carbon nanotubes multi-walled to growing and diferentiation of stem cells derived from adipose tissue. The intrinsic properties of the nanotubes, such as dimensions, electroconductivity and substrate formed show that nanotubes are to be able of stimulating stem cells neuro differentiation. Our results showed that the nanocomposite developed was able to support cell growth and proliferation proving to be biocompatible, electro-conductive and efficient in start the process of neuronal differentiation that was demonstrated by expression of GFAP protein. |