A conjectura de Willmore: um caso particular

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Douglas Claiton dos Passos Freitas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/EABA-9AJHTZ
Resumo: In this paper, we prove a particular case of Willmore conjecture, for torus M E3 embedded in Euclidean space E3 as tubes of constant circular sections. For this, we study some properties of the Willmore energy functional, given by W(M) = Z M H2dS. We prove that it is invariant under conformal transformations of Euclidean space E3, and we also prove that the condition for which the integral above, given to normal variationsof immersions of the compact orientable surface M E3 in E3, is stationary is called Euler equation: H + 2H(H2 K) 0.