Dosimetry of brachytherapy using radioactive nanoparticles: in silico
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ENG - DEPARTAMENTO DE ENGENHARIA NUCLEAR Programa de Pós-Graduação em Ciências e Técnicas Nucleares UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/36710 https://orcid.org/0000-0001-8250-5982 |
Resumo: | Nanopartículas radioativas (radio-NPs) funcionalizadas com biomoléculas específicas do tumor, injetadas de forma intratumoral, têm sido relatadas como uma alternativa à braquiterapia à base de sementes (LDR) de baixa taxa de dose (LDR). Em tratamentos de câncer à base de radiação a estimativa precisa da dose absorvida é crucial para o controle adequado da doença e para minimizar o risco de efeitos colaterais induzidos por radiação. Atualmente, o formalismo da Dose de Radiação Interna Médica (MIRD) usado para fins de dosimetria interna não considera o impacto da absorção e lavagem de radiofarmacêuticos na fração de sobrevivência celular (FS) e estimativa de dose absorvida. A dosimetria celular única (SCD), baseada no formalismo MIRD, é geralmente usada para avaliar as características dosimétricas dos radionuclídeos para aplicações teranósticas. No entanto, existem discrepâncias nos métodos gráficos e na distribuição de energia radial, utilizadas para estimar a distribuição da dose. Além disso, a modelagem precisa do transporte de radiação no meio pelos códigos de Monte Carlo (MC) desempenha um papel fundamental na estimativa da dose absorvida. O núcleo de ponto de dose (DPK) é usado para: (i) testar a precisão de diferentes códigos de Monte Carlo (MC), realizando comparação em termos de DPK; e (ii) estimam a dose absorvida por 3D na medicina nuclear. No entanto, pelo que sabemos, não foram investigadas as diferenças de impacto na DPK na dose absorvida. Este projeto de doutorado tem como objetivo realizar a dosimetria de aplicações LDR BT, utilizando radio-NPs, e preencher as lacunas acima mencionadas na literatura usando métodos de Monte Carlo (MC). Os cálculos dosimétricos foram realizados utilizando-se dois códigos MC amplamente utilizados: Geant4-DNA e EGSnrc. Inicialmente, a comparação em termos de DPK para elétrons na faixa de energia de 1 keV a 3 MeV foram realizadas para testar a precisão de ambos os códigos. Após a validação, utilizou-se a abordagem SCD para avaliar as características dosimétricas de emissão dos radionuclídeos de 12 alfa/beta/auger para aplicações teranósticas. Também foi proposto o conceito de função de dose radial para representação gráfica da distribuição de doses. Além disso, as curvas de sobrevivência celular publicadas na literatura foram replicadas utilizando-se o modelo matemático proposto por Sefl et al. 2016. O nosso trabalho apresenta que, tanto o Geant4-DNA quanto o EGSnrc podem simular com precisão o transporte de elétrons de baixa energia em relação a outros códigos MC. Além disso, as maiores diferenças entre as DPKs foram encontradas para energias eletrônicas abaixo de 10 keV, o que resultou na distribuição de dose homogênea em micrômetros e sem impacto em voxels em tamanhos milimétricos. Os emissores alfas foram encontrados para depositar a dose mais alta absorvida em comparação com os emissores auger e beta. Além disso, replicamos efetivamente as curvas de sobrevivência celular publicadas na literatura sobre o uso de radio-NPs para aplicações LDR BT. Concluiu-se que a precisão dos códigos MC e parâmetros MC deve ser validada e referenciada antes de usá-los para fins de dosimetria. Além disso, o conhecimento preciso da taxa de absorção, taxa de lavagem de NPs, radio-sensibilidade e taxa de repopulação de tumores é importante para o cálculo das curvas de sobrevivência celular. Keywords: Braquiterapia LDR, nanopartículas radioativas, núcleos de ponto de dose, métodos de Monte Carlo. |