Uso de redes neurais recorrentes para previsão de séries temporais financeiras

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: David Michel Quirino Nelson
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/ESBF-AM2NTS
Resumo: Prever variações de preço em bolsas de valores é um grande desafio devido ao fato que este é um ambiente imensamente complexo, caótico e dinâmico. Existem diversos estudos de variadas áreas buscando encarar tal desafio, e abordagens baseadas em Aprendizado de Máquina são o foco de muitos deles. Existem vários exemplos em que algoritmos de Aprendizado de Máquina foram capazes de alcançar resultados satisfatórios quando realizando tal tipo de previsão. Este trabalho estuda a aplicação de redes Long Short-Term Memory nesse problema, de previsão de tendências de preços de ações e com base no histórico de preços juntamente com indicadores de análise técnica.