Uso de redes neurais recorrentes para previsão de séries temporais financeiras
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/ESBF-AM2NTS |
Resumo: | Prever variações de preço em bolsas de valores é um grande desafio devido ao fato que este é um ambiente imensamente complexo, caótico e dinâmico. Existem diversos estudos de variadas áreas buscando encarar tal desafio, e abordagens baseadas em Aprendizado de Máquina são o foco de muitos deles. Existem vários exemplos em que algoritmos de Aprendizado de Máquina foram capazes de alcançar resultados satisfatórios quando realizando tal tipo de previsão. Este trabalho estuda a aplicação de redes Long Short-Term Memory nesse problema, de previsão de tendências de preços de ações e com base no histórico de preços juntamente com indicadores de análise técnica. |