Pontos periódicos quase elípticos em sistemas dinâmicos conservativos

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Andre Ribeiro de Resende Alves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/EABA-8YAT47
Resumo: Our objective is analize some generic properties of conservative and symplectic dynamical systems. We will focus our atention in two results we consider particularly relevant: Pixton's theorem, which proves the existence of a residual set of diffeomorphisms in R2 for which every hyperbolical periodic point has transverse homoclinic intersection; and a theorem by Newhouse, that proves the existence of a subset B Diffr!(M) such that if f 2 B then every quasi-elliptic periodic point of f is the limit of transverse homoclinic points off.