Pattern searcher for decision making of trading agents using genetic algorithm
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Programa de Pós-Graduação em Ciência da Computação UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/45981 |
Resumo: | Nos últimos anos, houve um crescimento no uso de métodos computacionais na área financeira, principalmente nas negociações no mercado financeiro. Os investidores vêm usando ferramentas computacionais para automatizar estratégias de investimento com o objetivo de maximizar lucros e reduzir riscos. Neste trabalho, nosso objetivo é trazer novas ideias e abordagens para o desenvolvimento de robôs de negociação automatizados com base em dados históricos de séries financeiras. Nosso modelo, chamado Pattern Searcher, foi inspirado em métodos de aprendizado de máquina e otimização evolutiva. Dado um agente de negociação com seus parâmetros pre-definidos, o método utiliza o poder do Algoritmo Genético (GA) para pesquisar, dentro de um conjunto de indicadores financeiros, a região que fornece um retorno positivo mais alto. Essa implementação exibiu propriedades desejáveis em comparação com alguns métodos de Aprendizado de Máquina, como a simplificação do fluxo do sistema e a geração de regras que os humanos podem entender mais claramente. Além disso, foram gerados portfólios de estratégias, compostos pelas estratégias derivadas do método Pattern Searcher, que também foram otimizados via GA. O sistema conseguiu gerar agentes e portfólios muito lucrativos no mercado brasileiro, superando importantes benchmarks. |