Detecção de vídeos não-colaborativos com base no conteúdo visual em redes sociais para compartilhamento de vídeo

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Antonio da Luz Junior
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
LSA
Link de acesso: http://hdl.handle.net/1843/ESBF-8TMMP8
Resumo: In this work we are concerned with detecting non-collaborative videos in video sharing social networks. Specifically, we investigate how much visual content-based analysis can aid in detecting ballot stuffing and spam videos in threads of video responses. That is a very challenging task, because of the high-level semantic concepts involved; of theassorted nature of social networks, preventing the use of constrained a priori information; and, which is paramount, of the context-dependent nature of non-collaborative videos. Content filtering for social networks is an increasingly demanded task: due to their popularity, the number of abuses also tends to increase, annoying the user and disruptingtheir services. We propose a context-aware description, which improves detection considerably in comparison with the baseline bags-of-visual-words model, by allowing us to incorporate the context of the video into the representation. Our model is evaluated in two challenging video dataset and show the feasibility of the proposed approaches.