Galerkin descontínuo no domínio do tempo aplicado a problemas com múltiplas escalas em nanofotônica

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Fidel Edson de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
Programa de Pós-Graduação em Engenharia Elétrica
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/31467
Resumo: The constant increase in the need for technological resources that bring higher rates of transmission, processing, and storage of data, drives the study of the properties of electromagnetic propagation in nanoscale devices. Thus, we find in the literature a significative number of scientific researches for this purpose. With the advanced hardware available nowadays and the increasing development of numerical methods, research using numerical models simulations are becoming more common around the world. One of the most promising photonic devices is the planar guide, based on two-dimensional photonic crystals. Numerical methods in the time domain can simulate propagation in these guides revealing peculiar characteristics, such as slow light. Among the problems encountered in the modeling of nanophotonic devices are problems with multiple scales. Numerical methods have difficulty adjusting to different scales. The DGTD is a promising method in the treatment of problems with multiple scales since it uses unstructured meshes in domain discretization. However, in the standard version, the time integration can bring a big computational cost. Therefore, researchers have been proposed local time stepping strategies (LTS). Although the existing LTS methods are efficient, they still have limitations and do not exploit the full potential of spatial discretization DG. Therefore, it is possible to develop more efficient LTS strategies. The LTS strategy developed here is based on the linear multistep strong stability preserving method (SSPMS). However, in principle, it can be applied to any single stage method. To test the strategy, we applied on electromagnetic wave propagation on photonic crystals planar guides. The results validate and demonstrate the multiclass strategy efficiency.