Cinética da angiogênese inflamatória induzida por implante de esponja na musculatura abdominal em camundongos

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Pollyana Ribeiro Castro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/BUOS-8ZSPVJ
Resumo: Injury of skeletal abdominal muscle wall is a common medical condition and implantation of synthetic or biological material is a procedure to repair musculofascial defects. We proposed to characterize the dynamics of inflammatory cell recruitment, newly formed blood vessels, cytokine production and fibrogenesis in the abdominal skeletal muscle in response to polyether-polyurethane sponge implants in mice. At 2, 4, 7 and 10 days after implantation the muscle tissue underneath the sponge matrix was removed for the assessment of the angiogenic response (hemoglobin content, vascular endothelial growth factor and morphometric analysis of the number of vessels) and inflammation (myeloperoxidase and N-acethyl--D-glucosaminidase activities, cytokines). In addition, muscle fibrogenesis was determined by the levels of TGF-1 and collagen deposition. Hemoglobin content, wash out rate of sodium fluorescein (indicative of blood flow) and the number of vessels increased in the abdominal muscle bearing the synthetic matrix in comparison with the intact muscle. Neutrophil recruitment peaked in the muscle at day 2, followed by macrophage accumulation at day 4 post-injury. The levels of the cytokines, VEGF, TNF-, CCL-2/JE were higher in the injured muscle compared with the intact muscle and peaked soon after muscle injury (days 2 to 4). Collagen levels were higher in sponge-bearing muscle compared with the non-bearing tissue soon after injury (day 2). The implantation technique together with the inflammatory and vascular parameters used in this study revealed inflammatory, angiogenic and fibrogenic events and mechanisms associated with skeletal muscle responses to synthetic implanted materials.