Recomendação de etiquetas para sumarização de perfis acadêmicos

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Isac Sandin Ribeiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/ESBF-A2FJ92
Resumo: Building expertise profiles is a crucial step towards identifying experts in different knowledge areas. However, summarizing the topics of expertise of a given individual is a challenging task, primarily due to the semi-structured and heterogeneous nature of the documentary evidence available for this task. In this dissertation, we investigate the suitability of tag recommendation as a mechanism to produce effective expertise profiles. In particular, we perform a large-scale user study with academic experts from different knowledge areas to assess the effectiveness of multiple supervised and unsupervised tag recommendation approaches as well as multiple sources of textual evidence. Our analysis reveals that traditional content-based tag recommenders perform well at identifying expertise-oriented tags, with article keywords being a particularly effective source of evidence across profiles in different knowledge areas and with various levels of sparsity. Moreover, by combining multiple recommenders and sources of evidence as learning signals, we further demonstrate the effectiveness of tag recommendation for expertise profiling.