Existence and non-existence of solutions to problems involving conformal operators on sphere and hemisphere
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE MATEMÁTICA Programa de Pós-Graduação em Matemática UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/34606 |
Resumo: | Neste trabalho, estudamos a existência e não existência de soluções não constantes para a seguinte equação A2su = f(u) in M, ∂u ∂ν = 0 on ∂M, e o sistema A2su1 = f1(u1, u2) in M, A2su2 = f2(u1, u2) in M, ∂u1 ∂ν = ∂u2 ∂ν = 0 on ∂M, onde M é a esfera unitaria ou semi-esfera canônica de dimensão n > 2 e A2s é o operador conforme fracionário ou intertwining para s ∈ (0, 1] ou s = 2. Sob certas condições de f, f1 e f2, vamos provar que as únicas soluções positivas dos problemas acima são constantes. As principais técnicas usadas são o método moving plane na forma integral e a geometria de M. Além disso, mostraremos que a equação possui in nitas soluções que mudam de sinal para qualquer s ∈ (0, 1). Neste trabalho, estudamos a existência e não existência de soluções não constantes para a seguinte equação A2su = f(u) in M, ∂u ∂ν = 0 on ∂M, e o sistema A2su1 = f1(u1, u2) in M, A2su2 = f2(u1, u2) in M, ∂u1 ∂ν = ∂u2 ∂ν = 0 on ∂M, onde M é a esfera unitaria ou semi-esfera canônica de dimensão n > 2 e A2s é o operador conforme fracionário ou intertwining para s ∈ (0, 1] ou s = 2. Sob certas condições de f, f1 e f2, vamos provar que as únicas soluções positivas dos problemas acima são constantes. As principais técnicas usadas são o método moving plane na forma integral e a geometria de M. Além disso, mostraremos que a equação possui in nitas soluções que mudam de sinal para qualquer s ∈ (0, 1). |