Proposta de um reator rápido refrigerado a gás utilizando transurânicos
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/BUBD-ADSM6L |
Resumo: | In the last two decades, nations that have invested in research and energy generation through nuclear source have devoted part of their efforts in developing new technologies for nuclear reactors. Part of this investment focuses on new material testing, particularly regarding new fuels. In a worldview that breaths sustainability, the reprocess and reuse of spent fuel from conventional reactors comes alive in nuclear technology, presenting itself as a real alternative of energy source for the latest generation of reactors. Different concepts of fourth generation reactors have been proposed and must meet some basic requirements, such as: extended burnup, improvement of passive safety, better radioactive waste management, possibility to use reprocessed fuel and proliferation resistance. In this context, the GFR (Gas-cooled Fast Reactor) is one of the future promises, presenting satisfactory neutronic results on the use of type of fuel (U, Pu) C. In the present work, the fuel of a traditional GFR reactor that uses (U, Pu)C was sub was replaced by a transuranic reprocessed fuel (TRU), obtained by non-proliferation reprocessing technology. The UO2 fuel initially enriched by 3.1% was burned in a standard PWR, with full burn of 33,000 MWd/T. Afterward it was left in a pool for 5 years and finally reprocessed by UREX + method. Two fuels were studied and evaluated, one diluted with depleted uranium (U, TRU)C, and the other diluted in thorium (Th, TRU)C. Assessments were done in steady state and as well as during burning and were compared with results obtained using the standard fuel, (U, Pu) C. The outcome shows that the use of TRU as a fuel, in GFR type reactors, is a real possibility. The research was done using the SCALE 6.0 code modules. |