Desigualdades que garantem a convergência do método de Newton-Raphson para os zeros do polinômio ultraesférico no caso principal
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/EABA-9Y6NZK |
Resumo: | The n points of Gauss-Gegenbauer quadrature are the zeros of the ultraspherical polynomial of degree n. The traditional and most-widely used eigensystem method computes the points as the eigenvalues of a symmetric tridiagonal matrix whose eigenvectors can be used to compute the corresponding weights. Alternatively the Newton-Raphson method can provide such points and weights using some properties of ultraspherical polynomials. In this work we show that if certain initial guesses are used, the Newton-Raphson method is in fact convergent for zeros of ultraspherical polynomials in the case 0 << 1. As a result weobtain some inequalities for zeros of ultraspherical polynomials. In addition, we compare the accuracy and computation time of both methods: eigensystem and Newton-Raphson. |