Extending JAGS for spatial data

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Magno Tairone de Freitas Severino
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/BUOS-AZGNHV
Resumo: Bayesian hierarchical modeling for spatial data is challenging for professionals from other areas than statistics. From a technical perspective, setting the model and the prior distributions are the simplest part of the process. What makes it dicult is the com putation of the posterior full conditionals and the implementation of the Gibbs Sampleralgorithm. The BUGS (Bayesian inference Using Gibbs Sampling) family of statistical softwares reduces the eort of modeling, since the user must indicate only the prior distributions and the likelihood function. However, in general these softwares do not im plement several spatial models, although users of WinBUGS and OpenBUGS can enjoy fromthe spatial add-on called GeoBUGS. JAGS (Just Another Gibbs Sampler), the open-source C++ developed version of the BUGS family, does not contain any function or distribution for spatial modeling. This project aims to ll this gap through the implementation of an extension to the JAGS software, allowing users from dierent elds to perform a spatialdata modeling and analysis