Aprendizagem semi-supervisionada aplicada à engenharia financeira

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Levi Henrique Santana de Lelis
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/BUOS-8CEE5L
Resumo: Semi-supervised learning had become, recently, a good alternative toimprove generalization capacity in machine learning models. The approach is generally used in problems that labeled samples are hard tobe obtained and unlabeled, in turn, are plenty and easily collected; the semisupervised training algorithm tries to generate the separation surface between the two classes based also on unlabeled data. A classic example is the web sites classification: give a trustworthy label to a sample is time consuming. Nonetheless, a crawler can quickly collect a great number of unlabeled samples. This work shows a different application of semi-supervised learning, because in this case, it is possessed a long labeled training set (financial time series can be easily downloaded from internet), however, the quality of this set is put under prove: the labels are trustworthy? Through the semi-supervisedapproach it was possible minimize the noise data from training set, improving the results obtained.