Essays on electricity price forecasting

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Tiago Silveira Gontijo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA PRODUÇÃO
Programa de Pós-Graduação em Engenharia de Produção
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/52319
https://orcid.org/0000-0003-2636-899X
Resumo: Developing predictive models is a complex task since it deals with the uncertainty and the stochastic behavior of variables. Specifically concerning commodities, accurately predicting their future prices allows for risk minimization and establishment of more reliable decision support mechanisms. Discussion of this issue is extensive, and academic attention is being paid to the construction of nonparametric models to be applied to energy markets. They have presented promising predictive results, which justifies this research. Given the above, the following question is formulated: How is it possible to predict energy prices accurately in the Brazilian spot market? The present thesis provides a systematic literature review of the main forecasting methods applied to the energy sector. In the present study, it was possible to identify research gaps and, thus, propose new predictive models. The present thesis presents predictive models based on the idea of analogs. Analogs consist of scanning a time series and identifying patterns (so-called "matches") that are similar to the last available observations. Additionally, the recent hierarchical time series prediction theory has been incorporated, since many energy databases have well-defined dependency patterns.