Qualitative analysis in many-objective optimization with visualization methods

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Roozbeh Haghnazar Koochaksaraei
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
Programa de Pós-Graduação em Engenharia Elétrica
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/42196
https://orcid.org/0000-0003-4656-9887
Resumo: Problemas de otimização com muitos objetivos apresentam vários desafios para os métodos de otimização atuais. Dentre essas, a visualização de soluções é um obstáculo importante para a interpretação dos resultados. Ter a habilidade de visualizar resultados parciais ou finais, de um problema multi-objetivo com várias dimensões, fornece vantagens chave para o otimizador bem como para o tomador de decisões, com relação a compreensão do problema e interpretação de resultados. Neste estudo, propõe-se uma ferramenta de visualização multi-propósito a ser aplicada em um processo de design evolucionário. A ferramenta de visualização proposta, denominada Visualização e Mapeamento em Arcos (VMA), contém duas partes e utilizações diferentes. VMA fornece duas importantes categorias de informação qualitativa sobre espaços de várias dimensões. A primeira parte da ferramenta mapeia as soluções do espaço de alta dimensão para as formas 2D, com base na extração da relação entre os objetivos. Em seguida, a segunda parte, mapeia as soluções do espaço de objetivos de alta dimensionalidade em uma forma 2D de espalhamento, baseada na norma e informações de ângulo entre os objetivos. A abordagem preserva algumas características desejáveis do espaço de objetivos, como a forma da Fronteira Pareto, sua localização, relações entre os objetivos, etc. Com o apoio desta ferramenta o decisor pode obter informações sobre a forma da frente de Pareto, a área explorada pelos algoritmos, uma estimativa qualitativa do desempenho do algoritmo, relação entre os objetivos, localização das soluções e sua dispersão. Além disso, este aplicativo tem escalabilidade e flexibilidade em relação ao número de objetivos e tamanho da população. Adicionalmente, o VMA permite ao decisor identificar visualmente regiões pouco exploradas do espaço de objetivos e determinar vetores de peso para guiar a busca por uma região específica ou preferida. Finalmente, os resultados experimentais mostram que esta ferramenta pode desempenhar um papel de métrica de desempenho e auxiliar o processo evolucionário de busca por soluções.