Análise e implementação de redes neurais generalizadas
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/RFFO-7HZHKC |
Resumo: | Esta dissertação propõe o estudo e a análise de modelos de redes neurais generalizadas. Estes modelos agregam a estrutura de verossimilhança dos modelos lineares generalizados e a flexibilidade das redes neurais artificiais na modelagem de interações não-lineares e não-aditivas entre as variáveis preditoras e a variável resposta. O treinamento é realizado segundo o método interativo do gradiente descendente, que procura minimizar a função desvio do modelo. O critério de qualidade do modelo é obtido via validação cruzada. Os resultados preliminares mostram que as redes neurais generalizadas apresentam resultados de previsão de excelente qualidade quando comparadas com os modelos lineares generalizados, de regressão de Cox e com a rede neural normal. |