A probabilistic algorithm to predict missing facts from knowledge graphs

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: André Lopes Gonzaga
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
Programa de Pós-Graduação em Ciência da Computação
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/34314
Resumo: Knowledge Graph, as the name says, is a way to represent knowledge using a directed graph structure (nodes and edges). However, such graphs are often incomplete or contain a considerable amount of wrong facts. This work presents ProA: a probabilistic algorithm to predict missing facts from Knowledge Graphs based on the probability distribution over paths between entities. Compared to current state-of-the-art approaches, ProA has the following advantages: simplicity as it considers only the topological structure of a knowledge graph, good performance as it does not require any complex calculations, and readiness as it has no other requirement but the graph itself.