Functional data analysis: spatial association of curves and irregular spacing

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Alvaro Alexander Burbano Moreno
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE ESTATÍSTICA
Programa de Pós-Graduação em Estatística
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/59365
Resumo: A análise de dados funcionais espaciais (SFD) é um área da estatística emergente que combina a análise de dados funcionais (FDA) e a modelagem de dependência espacial. Diferentemente dos métodos estatísticos tradicionais que tratam os dados como valores escalares ou vetores, a SFD considera os dados como funções contínuas, permitindo uma compreensão mais completa de seu comportamento e variabilidade. Essa abordagem é adequada para analisar dados coletados ao longo do tempo, do espaço ou de qualquer outro domínio contínuo. A SFD é aplicada em vários campos, incluindo economia, finanças, medicina, ciências ambientais e engenharia. Esta tese propõe novos modelos funcionais Gaussianos que incorporam estruturas de dependência espacial, com foco em dados tendo espaçamento irregular e que refletem curvas espacialmente correlacionadas. Os modelos são baseados em expansões de base B-spline e Polinômios de Bernstein (BP) e utilizam uma abordagem Bayesiana para estimar quantidades e parâmetros desconhecidos. A tese explora as vantagens e limitações dos modelos baseados em B-spline e BP na captura de formas e padrões complexos, garantindo a estabilidade numérica. As principais contribuições deste trabalho incluem o desenvolvimento de um modelo inovador voltado para SFD usando estruturas B-spline ou BP, incluindo um efeito aleatório para tratar de associações entre observações com espaçamento irregular, e um estudo de simulação abrangente para avaliar o desempenho dos modelos em vários cenários. A tese também apresenta duas aplicações reais relacionadas aos níveis de PM10 e Temperatura na Cidade do México, demonstrando ilustrações práticas dos modelos propostos.