Exact Bayesian inference for Markov switching Cox processes
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE ESTATÍSTICA Programa de Pós-Graduação em Estatística UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/33569 |
Resumo: | A modelagem estatística de dados pontuais é um problema comum e importante em diversas áreas do conhecimento. O processo pontual mais amplamente utilizado e o mais comum é o processo de Poisson e, em particular, em uma de suas generalizações, sua função de intensidade é considerada também como um processo estocástico. Este modelo é conhecido como processo de Cox e diferentes opções para modelar a dinâmica da função de intensidade dão origem a uma ampla gama de modelos. Apresentamos uma nova classe de processos Cox unidimensionais, a qual é um processo de Poisson não-homogêneo em que a função de intensidade se alterna entre diferentes formas funcionais paramétricas de acordo com a trajetória de uma cadeia de Markov em tempo contínuo. Nos referimos a essa nova classe como processos de Cox com mudanças markovianas. Alguns resultados e algoritmos já presentes na literatura são utilizados como base para desenvolver uma metodologia Bayesiana para se realizar inferência exata, através de algoritmos MCMC. A confiabilidade do algoritmo depende de uma variedade de especificações que são cuidadosamente abordadas. Estudos simulados e análise de dados reais são apresentados com o objetivo de investigar a eficiência e aplicabilidade da metodologia proposta. |