Interação solo-estrutura e contribuições para modelagem viscoelástica dos solos

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Ricardo Morais Lanes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA ESTRUTURAS
Programa de Pós-Graduação em Engenharia de Estruturas
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/73508
https://orcid.org/ 0000-0001-7322-6869
Resumo: Traditionally, building structures are designed under the simplified assumption of fixed foundations with immovable elements, idealized as simple or fixed supports. In this study, a rational procedure for soil-structure interaction analysis is proposed, incorporating the geometric nonlinear effects of frames on soil settlements. Special attention is given to shallow foundations subject to consolidation settlements. For this purpose, the Kelvin-Voigt, Boltzmann, and Zener viscoelastic models are described. The analyses are performed considering iterative coupling that makes the displacements compatible between systems based on the Finite Element Method and the Boundary Element Method. The Finite Element Method equations are solved using the Newton-Raphson method. Mindlin's fundamental solution is used to describe the semi-infinite medium. To represent the soil in a viscoelastic model, the boundary equations are rewritten in terms of stresses and displacements. The Boundary Element Method is reformulated to describe the Kelvin-Voigt, Boltzmann, and Zener methods in terms of stresses and displacements, considering the interferences caused by group effects between footings. Computational routines are implemented in Matlab©. Hypothetical examples of buildings affected by consolidation are studied. The results obtained are consistent with a good approximation of viscoelastic methods and the expected redistribution of forces in the structural elements.