Desenvolvimento e avaliação de uma metodologia para geração de agentes genéricos para jogos de tabuleiro

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Mateus Andrade Rezende
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/ESBF-AQ2PXY
Resumo: Um agente de General Game Playing (GGP) deve ser capaz de jogar efetivamente diferentes jogos talvez com algum processo inicial de aprendizagem. Dadas as regras de um jogo qualquer, como gerar um agente inteligente que seja competitivo em comparação a agentes específicos para o jogo? Neste trabalho, propomos um método denominado UCT-CCNN para o aprendizado off-line de função de valor para estados de jogos de tabuleiro. No método UCT-CCNN inúmeras partidas são jogadas pelos agentes MCTS com política da árvore conhecida como Upper Confidence Bounds for Tree (UCT) em um processo off-line que gera uma base de dados de exemplos de estado-utilidade. A partir desses exemplos uma função de valor para os estados de jogo é aprendida com o uso de redes neurais construtivas denominadas Cascade Correlation Neural Networks. Os jogos Othello e Trilha foram submetidos ao método UCT-CCNN e os agentes obtidos foram capazes de ganhar de agentes específicos do domínio.