Método Scan flexível para detecção em árvores hierárquicas

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Marcos de Oliveira Prates
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/RFFO-7UEP9Z
Resumo: Esse trabalho apresenta um deficiente algoritmo de varredura para bancos de dados hierárquicos que podem ser representados na forma de árvores. O algoritmo procura através dos galhos da árvore e é capaz de agregar folhas em diferentes galhos. A varredura procura por um cluster candidato através da estatística Minimum Description Length (MDL). A estatística de teste combina o logaritmo da razão de verossimilhança e a quantidade de informação necessária para representar internamente o cluster. Esse segundo termo controla os graus de liberdade do algoritmo de busca. Fazendo isso, a metodologia previne o acréscimo de folhas que desnecessariamente aumentem o termo do logaritmo da razão de verosimilhança. Resultados mostram que a metodologia MDL é um algoritmo flexível capaz de detectar clusters em bancos de dados hierárquicos nos quais os elementos do cluster estão distribuídos pela árvore. Dessa forma, o algoritmo explora grupos de cluster que não são explícitos simplesmente olhando para cortes nos galhos ou em analises combinatórias dos dados fornecidos.