Método Scan flexível para detecção em árvores hierárquicas
Ano de defesa: | 2008 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/RFFO-7UEP9Z |
Resumo: | Esse trabalho apresenta um deficiente algoritmo de varredura para bancos de dados hierárquicos que podem ser representados na forma de árvores. O algoritmo procura através dos galhos da árvore e é capaz de agregar folhas em diferentes galhos. A varredura procura por um cluster candidato através da estatística Minimum Description Length (MDL). A estatística de teste combina o logaritmo da razão de verossimilhança e a quantidade de informação necessária para representar internamente o cluster. Esse segundo termo controla os graus de liberdade do algoritmo de busca. Fazendo isso, a metodologia previne o acréscimo de folhas que desnecessariamente aumentem o termo do logaritmo da razão de verosimilhança. Resultados mostram que a metodologia MDL é um algoritmo flexível capaz de detectar clusters em bancos de dados hierárquicos nos quais os elementos do cluster estão distribuídos pela árvore. Dessa forma, o algoritmo explora grupos de cluster que não são explícitos simplesmente olhando para cortes nos galhos ou em analises combinatórias dos dados fornecidos. |