Sample size estimation for power and accuracy in the experimental comparison of metaheuristics

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Fernanda Caldeira Takahashi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
Programa de Pós-Graduação em Engenharia Elétrica
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/32571
Resumo: Experimentação algoritmica contempla o estudo de diretrizes e métodos para avaliação computacional de algoritmos. No campo da otimização, ela é útil para testar o desempenho de algoritmos ao resolver classes específicas de problemas. Nesse trabalho estamos desenvolvendo uma metodologia para geração planejamentos experimentais adequados para comparação de desempenhodemeta-heurísticas,comumfocoempotênciaestatísticaeprecisãonaestimação de parâmetros. Em particular, lidamos com estimação do tamanho amostral para experimentos que envolvem algoritmos de otimização, tanto em termos do número de execuções em uma mesma instância quanto do número de instâncias necessárias. Uma metodologia estatisticamente válida é apresentada para o calculo de tamanho amostral, permitindo comparações relevantes entre as performances de dois algoritmos para uma dada classe de problemas. A eficácia da metodologia é validada usando modelos simulados e exemplificada com dois estudos de caso. A metodologia proposta foi implementada na forma de pacote em R código aberto, publicado no repositório CRAN.