Controle robusto e coordenado de estabilizadores de sistemas de potência utilizando sinais remotos com vista à estabilidade angular dos sistemas de energia elétrica

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: COSTA FILHO, Raimundo Nonato Diniz lattes
Orientador(a): CASAS, Vicente Leonardo Paucar lattes
Banca de defesa: CASAS, Vicente Leonardo Paucar lattes, MARTINS, Nelson lattes, TARANTO, Glauco Nery lattes, BARRA JÚNIOR, Walter lattes, MENDEZ, Osvaldo Ronald Saavedra lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2427
Resumo: This work presents a methodology for the coordinated and robust design of power system stabilizers (PSS) of modern structures, aiming to improve the angular stability of electric power systems (EPS). The objective of PSS is to provide adequate damping torque to the power systems when they experience low-frequency electromechanical oscillations. In the last three decades, PSS with fixed structures have incorporated a set of functionalities that greatly contribute to the damping of electromechanical oscillations and effectiveness against severe perturbations occurrence in the EPS. Among these functionalities is the insertion of remote signals in the control loops that allows its application in wide-area measurement systems (WAMS). The coordinated design of the stabilizers is formulated as a multi-objective optimization problem to maximize the damping of the dominant eigenvalues of the EPS in closed-loop and for various operating conditions, to increase the transient stability region by minimizing the corresponding transient energy function and considering the robustness of the controllers through the matrix perturbation theory. The Padé approximation has modeled adequately the remote signals of stabilizers. Artificial intelligence (AI) techniques for the coordinated and robust design of the stabilizers and ensure adequate minimum damping are used. The proposed methodology was applied to two test systems, a Brazilian 5-generator and 7-bus equivalent model, and a reduced equivalent of the NETS-NYPS (New England test system – New York power system) 16-generator and 68-bus interconnected system.